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ABSTRACT

The Q-adequacy of any finite Galois 2-extension of Q is shown to depend
only on the Q-adequacy of its maximal elementary abelian intermediate
field, which must be either quadratic (and hence always Q-adequate) or
biquadratic over Q. A precise description of those biquadratic extensions
of Q which are (radequate is given. This then gives a method for ex-
plicitly determining whether any given finite Galois 2-extension of Q can
arise as a subfield of a Q-central division algebra.
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1. Introduction

This paper is concerned with a special case of the following question: If F' is a
field and L a finite extension of F, does there exist an F-central division algebra
D containing L as a maximal commutative subfield? If such a D exists, then
L is said to be F-adequate; otherwise L is F-deficient. This question was first
explored in depth in [S]. In this paper we present a complete answer to the
question of which biquadratic extensions Qf/m.,/n) of the rational numbers Q
are Q-adequnate. Using a result in [LSS] we show in Theorem 2.1 that biquadratic
extensions are the key to determining Q-adequacy of any Galois 2-extension of
Q. Thus this paper provides an explicit means for testing the Q-adequacy of any
such extension.

It is shown in [S], Theorem 2.8, that if G is a group for which every
Sylow subgroup is cyclic, then every Galois extension L of a global field F' with
Gal(L/F) = G is F-adequate. Thus biquadratic extensions of Q represent the
first level of difficulty where such an extension may be Q-deficient.

2. -adequacy of Galois 2-extensions

In this section we fix L to be a finite Galois 2-extension of Q with G = Gal(L/Q).
Let ®(G) be the Frattini subgroup of G, and let K be the subfield of L that is
fixed by ®(G). Since ®(G) is a normal subgroup of G, it follows that K/Q is
a Galois extension. Since the quotient of a p-group by its Frattini subgroup is
the maximal elementary abelian quotient of the group, it follows that K is the
maximal elementary abelian extension of Q inside L. (See [H], Chapter 12.2 for
results on the Frattini subgroup of a p-group.)

THEOREM 2.1: With the notation above, L is Q-adequate if and only if either
[K : Q] =2 or K is a Q-adequate biquadratic extension of Q.

Proof: First assume that L is Q-adequate. Then a result of Schacher ([S],
Theorem 4.1) implies that G is metacyclic. It follows that

[K:Q =[G:2(G)] <4

(See [LSS, Proposition 2.6(1)].) By [S], Corollary 2.3, if L is Q-adequate, then
K is also -adequate.

Now assume that either [K : Q] = 2 or K is a Q-adequate biquadratic extension
of Q If [K : Q] = 2, then Gal(K/Q) is cyclic, and it follows from [S], Theorem
2.8, that K is Q-adequate. The proof is finished by using the following result
proved in [LSS], Theorem 2.2 and Proposition 2.3. ]
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THEOREM 2.2: Let L be a Galois p-extension of a number field F, and let K be
the maximal elementary abelian p-extension of F inside L. Then L is F-adequate
if K is F-adequate.

Since the results in the following section describe explicitly how to determine
Q-adequacy of biquadratic extensions, these results and Theorem 2.1 allow one
to determine -adequacy of any finite Galois 2-extension of Q.

3. Q-adequacy of biquadratic extensions

The key result needed for determining adequacy of biquadratic extensions of
global fields is the following, obtained from specializing [S], Propositions 2.1 and
2.5, to the biquadratic setting.

PRroOPOSITION 3.1: The biquadratic extension Qf/m,/n) is Q-adequate if and
only if [Q,§/ma/n) : Qp] = 4 for two different rational primes p.

Note that (Q,4/m,/n) : Qp] = 4 if and only if none of m,n, mn is a square in
Qp. We can describe when this occurs in terms of congruence conditions mod 8
and mod p for p | mn. To aid us in this description we recall the definitions and
basic results of the Legendre symbol ([IR], p. 51) and the Hilbert symbol ([Se],
pp. 19-20).

If pis an odd prime and n is an integer relatively prime to p, then the Legendre
symbol (%) is defined by

ny _ { 1 if n is congruent to a square mod p,
p —1 otherwise.

For integers m, n and a fixed prime p, the Hilbert symbol (m, n), is defined by

(m,m), = 1 if the quadratic form (m,n) represents 1 over Qp,
B4 —1 otherwise.

The Hilbert symbol is bimultiplicative. Also, if p {mn and p is odd, we have

(p,m)p = (%) and (m,n), =1,
while for p = 2, with mn odd, we have
(2,m)s = (_1)(m2_1)/8 and (m,n), = (_1)((m—1)/2)~((n—1)/2).

We use these properties along with the following proposition ([G], p. 71) to
determine whether given integers are squares in Qp, and thus to determine

Q@ /ma/n) : Q.
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PROPOSITION 3.2:
(1) An odd integer z is a square in Q if and only if z =1 (8).
(2) Let p be an odd prime. Then an integer z, relatively prime to p, is a square
in Q, if and only if(f,) =1.

For p an odd prime, the square classes in (Q, are represented by {1,s,p,ps}
where s is a nonsquare unit. For @, the square classes are represented by
{1,-1,2,-2,5,-5,10,-10}. (See, e.g., [G], p. 71.)

For the remainder of this section we assume, without loss of generality, that m
and n are square-free integers. For an odd prime p, if p{ mn, then m,n and mn
are all units, and so at least one must be a square in Q,. Thus for odd primes
p, if [Qp/mw/n) : Qy] = 4, then p | mn. The situation is more complicated for
p = 2 as it is possible for m,n, and mn all to be nonsquare units. Therefore, to
determine whether [Q,4/m,/n) : Q,] = 4 for at least two primes p, we need to
consider only p = 2 and primes p dividing mn. Observe that since m is square
free, if p | m then m is not a square in Q,.

We will write m = rt, n = st where t = ged(m,n), ¢ > 0. We may also
assume ¢ is odd, for if 2 | m and 2 | n, we can work with the square-free parts
of m, mn instead. Then r,s,t are pairwise relatively prime square-free integers.
Let Qg = {0} U{2,3,5,7,11,...}, the set of all places of Q, and let

S = {p € Q| pis odd and [Q, §/m\/n) : Q] = 4}.

Then S is a finite set, since by the remarks above, if p € S then p | mn.
Proposition 3.1 can then be restated as follows.

PROPOSITION 3.3: The biquadratic extension Q4/mn/n) is Q-adequate if and
only if either

(1) [Q2(\/'n_7’v\/ﬁ) : QZ] =4 and ISI >1or

(2) 151 = 2.

In addition we have the following useful result.

PROPOSITION 3.4: [Qqf/mn/n) : Qo] = 4 if and only if m # 1 (8), n # 1 (8)
and mn £ 1 (8).

Proof: This extension has degree 4 if and only if m, n and mn = rst? are all
non-squares in Q». Since ¢ is odd and m, n are square-free, none of m, n, mn is
divisible by 4. Thus by Proposition 3.2, an element in {m,n,mn} is a square in
@, if and only if the element is congruent to 1(8). |
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Let |r| = [L;_y i, |s| = [1;=, 85, and ¢ = [T}, tx where r,, 5, t); are all distinct
primes. (In case either [r] = 1,|s| = 1, or t = 1, the corresponding product is the
empty product, always taken to be 1.) Observe that the only primes which lie
in S are odd primes from among {r,}, {s;}, {tx}. The following lemma gives the
criteria for determining which of these primes are in S.

LEMMA 3.5: Let r,,s,,tx be as above, and assume 1,,s; are odd. Then
(1) r, € S if and only if (m,n),, = -1,
(2) s, € S if and only if (m,n),, = —1, and
(3) tx € S if and only if (m,n)s, (—1,tx)s, = —1.

Proof: For a prime p to be in S, we need m,n, and mn all to be non-squares in
Qp, so with the notation given above, rt, st, and rs should all be non-squares. If r,
is odd, then r, € S if and only if (ﬁ—f) = —1, which is equivalent to (m,n),, = —1.
Likewise if s, is odd, then s, € S if and only if ( ;—:) = —1, which is equivalent to
(m,n)s, = —1. Finally, t, € S if and only if (§2) = —1, but (§2) = (F*)(F}) =

te tr
(m, n)g, (=1, tk)e,, since (m,n)e, = (%) and (—1,¢k)s, = (;—kl) |

Lemma, 3.5 allows Propositions 3.3 and 3.4 to be restated as follows:

THEOREM 3.6: The biquadratic extension Q4/m,/n) is Q-adequate if and only
if one of the following conditions holds.
(1) m, n, mn # 1(8) and there is an odd prime p | mn such that either p* { mn
and (m,n), = —1, or p* | mn and (m,n),(—1,p), = 1.
(2) There are at least two odd primes p | mn that satisfy either of the conditions
in (1).

Checking Q-adequacy of biquadratic extensions thus becomes a matter of
checking the values of Hilbert symbols (or Legendre symbols if one prefers) for
odd prime divisors of m and n and congruence relations modulo 8. In certain
cases it is possible to state the congruences that determine Q-adequacy of bi-
quadratic extensions solely in terms of r, s, ¢, thus eliminating any need to factor
m and n beyond finding ¢ through the Euclidean algorithm. This occurs when
we know [Q2 (/mn/n) : Q2] = 4 and |S| is odd. These conditions can be checked
using Proposition 3.4 above and Lemma 3.7, given below.

LEMMA 3.7: |S| is even if and only if (m,n)e(m,n)2(=1,t)s = 1.
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Proof: Using Lemma 3.5 and Hilbert reciprocity, we have

1= H (m,n)p
pESle
= (mvn)oo(mv n)2 H ('m'7 n)r, H (m,n)‘g] H(m,n)tl,
r, 0odd s, odd i

= (m,n)oo(m, n)2(_1)|s| H(—l, tk)tk'

Foreach iy, 1= Hpeno(_lvtk)p = (=1, tk)oo(—1, tk)2(—1,tk)t,, and (—1,¢k)00 =
1, since tx > 0. Thus (—1,%x), = (—1,k)2 and so

1= (m,n)oo(m, n)a (-1 (=1, k)2

= (m’ n)w(mv n)2(_1)}sl(-1’ t)2-

Thus (—1)!81 = (m,n)00(m, n)a(—1,t), giving the stated result. 1

COROLLARY 3.8: The biquadratic extension Q§/m,/n) is Q-adequate if
[@:4/ma/n) : Q2] = 4 and |S| is odd. This occurs if and only if m, n, mn # 1(8)
and either at least one of m, n is positive with (m,n)s(—1,t)a = -1, or m, n are
both negative with (m,n)a(—1,¢t)s = 1.

Proof: Since |S| > 1if |S] is odd, Q-adequacy of the given biquadratic extension
follows from Proposition 3.3(1). Proposition 3.4 gives the necessary and sufficient
conditions for [Qx§/m/n) : Q2] = 4, and so we are reduced to determining when
|S|is odd. By Lemma 3.7, this occurs if and only if (m, n)oo(m,n)2(—1,t)2 = —1.
Since (m,n)o = 1 if and only if at least one of m, n is positive, we see that |S]| is
odd if and only if either at least one of m, n is positive with (m,n)(—1,8)g = —1
or m, n are both negative with (m,n)s(—1,t)2 = 1. ]

We now consider some special situations where we can use Corollary 3.8 to
verify the Q-adequacy of the extension Qf/m,/n) solely in terms of simple
congruence conditions.

COROLLARY 3.9: Let m,n be relatively prime odd integers. Then Qf/m,\/n) is
Q-adequate if either
(1) at least one of m,n is positive, m = n = 3(4) and mn = 5(8), or
(2) both m and n are negative and interchanging m,n if necessary, m = 5(8)
and n = 3(4).
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Proof: Apply Corollary 3.8 with ¢t = 1 and recall
(m,n)q = (—1)(tm=1/2)-((n=1)/2) 1

COROLLARY 3.10: Let L = Qf/mn/n) where m = rt,n = 2s't, with r,s',t
pairwise relatively prime and odd, and t positive. If at least one of m,n is
positive, then L is Q-adequate if any of the following conditions hold:

(1) m=-1(8), s’ = 3(4),

(2) m=-3(8), r=1(4), or

(3) m=3(8), s =1(4).
If both m and n are negative, then L is Q-adequate if any of the following
conditions hold:

(1) m=-1(8), s’ = 1(4),

(2) m=-3(8), r=3(4), or

(3) m = 3(8), s =3(4).

Proof: Since n = 2(4), the conditions m = —1,—3 or 3(8) guarantee

(@ 4/my/n): Q] =4

in all cases. We apply Corollary 3.8 by first observing that

(myn)a(=1,t)3 = (m,2)2(m, 8" )a(m, t)a(—1,t)2 = (m, 2)2(m, 8')a(—7t,t)2
= (m,2)a(m, s")2(r, )2 = (-1)°,

where ¢ = (B5=1) 4 (m21)(¢=1) 4 (51)(551), If m = —1(8), then r = —t(8),
and € = £51 (2). If m = —3(8), then r = t(4), and € = 1 + (552)(551) (2), s
e=0(2)if r =3(4) and e = 1(2) if r = 1(4). If m = 3(8), then r # £(4), and
e=1+ Q%‘l (2). The results then follow. 1

The analysis of the Q-adequacy of the biquadratic extensions Qf/p,/q) and
Q4/—p»/q) for p, q distinct primes was carried out in [S], §3. When both p and
g are odd primes, however, the author neglected to consider the degree over Q,
leading to some inaccurate conclusions in these cases. The next corollary corrects
these results of Schacher ([S], Theorem 3.2, Corollary 3.3 and Theorem 3.4 (3)).

COROLLARY 3.11: Let p, q be distinct odd primes.
) Q4/Pn/4) is Q-adequate if and only if either (5—) = (g) =-lorp=gq=
3(4), pg =5 (8).
2) Q(\/g—),\/?))is Q-deficient if and only if either () = (1) =1 orp=g=3(4),
pg=1 (8).
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(3) Q/—pn/9) is Q-adequate if and only if either (2) = (1) = -1 orp =
1(4),¢q=3(4),pg =3(8).

Proof: We prove statement (3) only; statement (1) is proved similarly and (2)
follows easily from (1). We have |S| > 2 if and only if |S| = 2, which occurs if and
only if (2) = (1) = —1. We have |S| =1 if and only if |S| is odd, which occurs
if and only if (=p,q)2 = —1 by Lemma 3.7. Since (—p,q)2 = (—1):%1'95_1,
it follows that (—p,q)2 = -1 if and only if p = 1 (4),¢ = 3 (4). Observe
[Q2/=P,1/q) : Q2] = 4 if and only if —p,q, —pg # 1 (8). The result now follows
from Proposition 3.3. ]

The following two corollaries consider several other special cases where
Theorem 3.6 can be applied to determine precisely when the given extension
is Q-adequate.

COROLLARY 3.12:

(1) Let m be an odd integer, possibly negative. Then Qf/m/2) is Q-adequate
if and only if m has at least one prime factor r; = +3 (8). This always
occurs if m = £3 (8).

(2) Let m be a positive odd integer. Then Q4/m/—2) is Q-adequate if and
only if m has at least one prime factor r, such that either r; = —1 (8) or
r, = —3 (8). This always occurs if either m = —1 (8) or m = —3 (8).

(3) Let m be a negative odd integer. Then Q4/m,/=2) is Q-adequate if and
only if either m # 1 (8) and m has at least one prime factor r, withr; = -1
or —3 (8), or m = 1(8) and m has at least two prime factors congruent to
—1 or —3 (8). This always occurs if m = 3(8).

Proof: Apply Theorem 3.6 to the situation where n = +2, t = 1. |

COROLLARY 3.13:
(1) Let n be a positive odd integer. The extension Qf/—1,/n) is Q-adequate if
and only if either n = 3(8) or at least two prime factors of n are congruent
to 3(4).
(2) Let n be a positive even integer. Then Qf/—1,/n), is Q-adequate if and
only if n has at least one prime factor s; = 3 (4). This always occurs if
n =6 (8).

Proof: Apply Theorem 3.6 to the situation where m = -1, ¢t =1. |
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