

\mathbb{Q} -ADEQUACY OF GALOIS 2-EXTENSIONS

BY

HELEN G. GRUNDMAN*

Department of Mathematics, Bryn Mawr College

Bryn Mawr, PA 19010-2899, USA

e-mail: grundman@brynmawr.edu

AND

DAVID B. LEEP

Department of Mathematics, University of Kentucky

Lexington, KY 40506-0027, USA

e-mail: leep@ms.uky.edu

AND

TARA L. SMITH

Department of Mathematical Sciences, University of Cincinnati

Cincinnati, OH 45221-0025, USA

e-mail: tsmith@math.uc.edu

ABSTRACT

The \mathbb{Q} -adequacy of any finite Galois 2-extension of \mathbb{Q} is shown to depend only on the \mathbb{Q} -adequacy of its maximal elementary abelian intermediate field, which must be either quadratic (and hence always \mathbb{Q} -adequate) or biquadratic over \mathbb{Q} . A precise description of those biquadratic extensions of \mathbb{Q} which are \mathbb{Q} -adequate is given. This then gives a method for explicitly determining whether any given finite Galois 2-extension of \mathbb{Q} can arise as a subfield of a \mathbb{Q} -central division algebra.

* Research supported by the Faculty Research Fund of Bryn Mawr College.

Received May 25, 2000

1. Introduction

This paper is concerned with a special case of the following question: If F is a field and L a finite extension of F , does there exist an F -central division algebra D containing L as a maximal commutative subfield? If such a D exists, then L is said to be F -adequate; otherwise L is F -deficient. This question was first explored in depth in [S]. In this paper we present a complete answer to the question of which biquadratic extensions $\mathbb{Q}(\sqrt{m}, \sqrt{n})$ of the rational numbers \mathbb{Q} are \mathbb{Q} -adequate. Using a result in [LSS] we show in Theorem 2.1 that biquadratic extensions are the key to determining \mathbb{Q} -adequacy of any Galois 2-extension of \mathbb{Q} . Thus this paper provides an explicit means for testing the \mathbb{Q} -adequacy of any such extension.

It is shown in [S], Theorem 2.8, that if G is a group for which every Sylow subgroup is cyclic, then every Galois extension L of a global field F with $\text{Gal}(L/F) \cong G$ is F -adequate. Thus biquadratic extensions of \mathbb{Q} represent the first level of difficulty where such an extension may be \mathbb{Q} -deficient.

2. \mathbb{Q} -adequacy of Galois 2-extensions

In this section we fix L to be a finite Galois 2-extension of \mathbb{Q} with $G = \text{Gal}(L/\mathbb{Q})$. Let $\Phi(G)$ be the Frattini subgroup of G , and let K be the subfield of L that is fixed by $\Phi(G)$. Since $\Phi(G)$ is a normal subgroup of G , it follows that K/\mathbb{Q} is a Galois extension. Since the quotient of a p -group by its Frattini subgroup is the maximal elementary abelian quotient of the group, it follows that K is the maximal elementary abelian extension of \mathbb{Q} inside L . (See [H], Chapter 12.2 for results on the Frattini subgroup of a p -group.)

THEOREM 2.1: *With the notation above, L is \mathbb{Q} -adequate if and only if either $[K : \mathbb{Q}] = 2$ or K is a \mathbb{Q} -adequate biquadratic extension of \mathbb{Q} .*

Proof: First assume that L is \mathbb{Q} -adequate. Then a result of Schacher ([S], Theorem 4.1) implies that G is metacyclic. It follows that

$$[K : \mathbb{Q}] = [G : \Phi(G)] \leq 4.$$

(See [LSS, Proposition 2.6(1)].) By [S], Corollary 2.3, if L is \mathbb{Q} -adequate, then K is also \mathbb{Q} -adequate.

Now assume that either $[K : \mathbb{Q}] = 2$ or K is a \mathbb{Q} -adequate biquadratic extension of \mathbb{Q} . If $[K : \mathbb{Q}] = 2$, then $\text{Gal}(K/\mathbb{Q})$ is cyclic, and it follows from [S], Theorem 2.8, that K is \mathbb{Q} -adequate. The proof is finished by using the following result proved in [LSS], Theorem 2.2 and Proposition 2.3. ■

THEOREM 2.2: *Let L be a Galois p -extension of a number field F , and let K be the maximal elementary abelian p -extension of F inside L . Then L is F -adequate if K is F -adequate.*

Since the results in the following section describe explicitly how to determine \mathbb{Q} -adequacy of biquadratic extensions, these results and Theorem 2.1 allow one to determine \mathbb{Q} -adequacy of any finite Galois 2-extension of \mathbb{Q} .

3. \mathbb{Q} -adequacy of biquadratic extensions

The key result needed for determining adequacy of biquadratic extensions of global fields is the following, obtained from specializing [S], Propositions 2.1 and 2.5, to the biquadratic setting.

PROPOSITION 3.1: *The biquadratic extension $\mathbb{Q}(\sqrt{m}, \sqrt{n})$ is \mathbb{Q} -adequate if and only if $[\mathbb{Q}_p(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_p] = 4$ for two different rational primes p .*

Note that $[\mathbb{Q}_p(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_p] = 4$ if and only if none of m, n, mn is a square in \mathbb{Q}_p . We can describe when this occurs in terms of congruence conditions mod 8 and mod p for $p \mid mn$. To aid us in this description we recall the definitions and basic results of the Legendre symbol ([IR], p. 51) and the Hilbert symbol ([Se], pp. 19–20).

If p is an odd prime and n is an integer relatively prime to p , then the Legendre symbol $(\frac{n}{p})$ is defined by

$$\left(\frac{n}{p}\right) = \begin{cases} 1 & \text{if } n \text{ is congruent to a square mod } p, \\ -1 & \text{otherwise.} \end{cases}$$

For integers m, n and a fixed prime p , the Hilbert symbol $(m, n)_p$ is defined by

$$(m, n)_p = \begin{cases} 1 & \text{if the quadratic form } \langle m, n \rangle \text{ represents 1 over } \mathbb{Q}_p, \\ -1 & \text{otherwise.} \end{cases}$$

The Hilbert symbol is bimultiplicative. Also, if $p \nmid mn$ and p is odd, we have

$$(p, m)_p = \left(\frac{m}{p}\right) \quad \text{and} \quad (m, n)_p = 1,$$

while for $p = 2$, with mn odd, we have

$$(2, m)_2 = (-1)^{(m^2-1)/8} \quad \text{and} \quad (m, n)_2 = (-1)^{((m-1)/2) \cdot ((n-1)/2)}.$$

We use these properties along with the following proposition ([G], p. 71) to determine whether given integers are squares in \mathbb{Q}_p , and thus to determine $[\mathbb{Q}_p(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_p]$.

PROPOSITION 3.2:

- (1) *An odd integer z is a square in \mathbb{Q}_2 if and only if $z \equiv 1 \pmod{8}$.*
- (2) *Let p be an odd prime. Then an integer z , relatively prime to p , is a square in \mathbb{Q}_p if and only if $(\frac{z}{p}) = 1$.*

For p an odd prime, the square classes in \mathbb{Q}_p are represented by $\{1, s, p, ps\}$ where s is a nonsquare unit. For \mathbb{Q}_2 , the square classes are represented by $\{1, -1, 2, -2, 5, -5, 10, -10\}$. (See, e.g., [G], p. 71.)

For the remainder of this section we assume, without loss of generality, that m and n are square-free integers. For an odd prime p , if $p \nmid mn$, then m, n and mn are all units, and so at least one must be a square in \mathbb{Q}_p . Thus for odd primes p , if $[\mathbb{Q}_p(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_p] = 4$, then $p \mid mn$. The situation is more complicated for $p = 2$ as it is possible for m, n , and mn all to be nonsquare units. Therefore, to determine whether $[\mathbb{Q}_p(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_p] = 4$ for at least two primes p , we need to consider only $p = 2$ and primes p dividing mn . Observe that since m is square free, if $p \mid m$ then m is not a square in \mathbb{Q}_p .

We will write $m = rt$, $n = st$ where $t = \gcd(m, n)$, $t > 0$. We may also assume t is odd, for if $2 \mid m$ and $2 \mid n$, we can work with the square-free parts of m, mn instead. Then r, s, t are pairwise relatively prime square-free integers. Let $\Omega_{\mathbb{Q}} = \{\infty\} \cup \{2, 3, 5, 7, 11, \dots\}$, the set of all places of \mathbb{Q} , and let

$$S = \{p \in \Omega_{\mathbb{Q}} \mid p \text{ is odd and } [\mathbb{Q}_p(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_p] = 4\}.$$

Then S is a finite set, since by the remarks above, if $p \in S$ then $p \mid mn$. Proposition 3.1 can then be restated as follows.

PROPOSITION 3.3: *The biquadratic extension $\mathbb{Q}(\sqrt{m}, \sqrt{n})$ is \mathbb{Q} -adequate if and only if either*

- (1) $[\mathbb{Q}_2(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_2] = 4$ and $|S| \geq 1$ or
- (2) $|S| \geq 2$.

In addition we have the following useful result.

PROPOSITION 3.4: $[\mathbb{Q}_2(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_2] = 4$ if and only if $m \not\equiv 1 \pmod{8}$, $n \not\equiv 1 \pmod{8}$ and $mn \not\equiv 1 \pmod{8}$.

Proof: This extension has degree 4 if and only if m, n and $mn = rst^2$ are all non-squares in \mathbb{Q}_2 . Since t is odd and m, n are square-free, none of m, n, mn is divisible by 4. Thus by Proposition 3.2, an element in $\{m, n, mn\}$ is a square in \mathbb{Q}_2 if and only if the element is congruent to 1(8). \blacksquare

Let $|r| = \prod_{i=1}^u r_i$, $|s| = \prod_{j=1}^v s_j$, and $t = \prod_{k=1}^w t_k$ where r_i, s_j, t_k are all distinct primes. (In case either $|r| = 1$, $|s| = 1$, or $t = 1$, the corresponding product is the empty product, always taken to be 1.) Observe that the only primes which lie in S are odd primes from among $\{r_i\}, \{s_j\}, \{t_k\}$. The following lemma gives the criteria for determining which of these primes are in S .

LEMMA 3.5: *Let r_i, s_j, t_k be as above, and assume r_i, s_j are odd. Then*

- (1) $r_i \in S$ if and only if $(m, n)_{r_i} = -1$,
- (2) $s_j \in S$ if and only if $(m, n)_{s_j} = -1$, and
- (3) $t_k \in S$ if and only if $(m, n)_{t_k}(-1, t_k)_{t_k} = -1$.

Proof: For a prime p to be in S , we need m, n , and mn all to be non-squares in \mathbb{Q}_p , so with the notation given above, rt, st , and rs should all be non-squares. If r_i is odd, then $r_i \in S$ if and only if $(\frac{st}{r_i}) = -1$, which is equivalent to $(m, n)_{r_i} = -1$. Likewise if s_j is odd, then $s_j \in S$ if and only if $(\frac{rt}{s_j}) = -1$, which is equivalent to $(m, n)_{s_j} = -1$. Finally, $t_k \in S$ if and only if $(\frac{rs}{t_k}) = -1$, but $(\frac{rs}{t_k}) = (\frac{-rs}{t_k})(\frac{-1}{t_k}) = (m, n)_{t_k}(-1, t_k)_{t_k}$, since $(m, n)_{t_k} = (\frac{-rs}{t_k})$ and $(-1, t_k)_{t_k} = (\frac{-1}{t_k})$. ■

Lemma 3.5 allows Propositions 3.3 and 3.4 to be restated as follows:

THEOREM 3.6: *The biquadratic extension $\mathbb{Q}(\sqrt{m}, \sqrt{n})$ is Q-adequate if and only if one of the following conditions holds.*

- (1) $m, n, mn \not\equiv 1(8)$ and there is an odd prime $p \mid mn$ such that either $p^2 \nmid mn$ and $(m, n)_p = -1$, or $p^2 \mid mn$ and $(m, n)_p(-1, p)_p = -1$.
- (2) There are at least two odd primes $p \mid mn$ that satisfy either of the conditions in (1).

Checking Q-adequacy of biquadratic extensions thus becomes a matter of checking the values of Hilbert symbols (or Legendre symbols if one prefers) for odd prime divisors of m and n and congruence relations modulo 8. In certain cases it is possible to state the congruences that determine Q-adequacy of biquadratic extensions solely in terms of r, s, t , thus eliminating any need to factor m and n beyond finding t through the Euclidean algorithm. This occurs when we know $[\mathbb{Q}(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_2] = 4$ and $|S|$ is odd. These conditions can be checked using Proposition 3.4 above and Lemma 3.7, given below.

LEMMA 3.7: $|S|$ is even if and only if $(m, n)_\infty(m, n)_2(-1, t)_2 = 1$.

Proof: Using Lemma 3.5 and Hilbert reciprocity, we have

$$\begin{aligned} 1 &= \prod_{p \in \Omega_0} (m, n)_p \\ &= (m, n)_\infty (m, n)_2 \prod_{r_i \text{ odd}} (m, n)_{r_i} \prod_{s_j \text{ odd}} (m, n)_{s_j} \prod_{t_k} (m, n)_{t_k} \\ &= (m, n)_\infty (m, n)_2 (-1)^{|S|} \prod_{t_k} (-1, t_k)_{t_k}. \end{aligned}$$

For each t_k , $1 = \prod_{p \in \Omega_0} (-1, t_k)_p = (-1, t_k)_\infty (-1, t_k)_2 (-1, t_k)_{t_k}$, and $(-1, t_k)_\infty = 1$, since $t_k > 0$. Thus $(-1, t_k)_{t_k} = (-1, t_k)_2$ and so

$$\begin{aligned} 1 &= (m, n)_\infty (m, n)_2 (-1)^{|S|} \prod_{t_k} (-1, t_k)_2 \\ &= (m, n)_\infty (m, n)_2 (-1)^{|S|} (-1, t)_2. \end{aligned}$$

Thus $(-1)^{|S|} = (m, n)_\infty (m, n)_2 (-1, t)_2$, giving the stated result. \blacksquare

COROLLARY 3.8: *The biquadratic extension $\mathbb{Q}(\sqrt{m}, \sqrt{n})$ is \mathbb{Q} -adequate if $[\mathbb{Q}_2(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_2] = 4$ and $|S|$ is odd. This occurs if and only if $m, n, mn \not\equiv 1(8)$ and either at least one of m, n is positive with $(m, n)_2(-1, t)_2 = -1$, or m, n are both negative with $(m, n)_2(-1, t)_2 = 1$.*

Proof: Since $|S| \geq 1$ if $|S|$ is odd, \mathbb{Q} -adequacy of the given biquadratic extension follows from Proposition 3.3(1). Proposition 3.4 gives the necessary and sufficient conditions for $[\mathbb{Q}_2(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_2] = 4$, and so we are reduced to determining when $|S|$ is odd. By Lemma 3.7, this occurs if and only if $(m, n)_\infty (m, n)_2 (-1, t)_2 = -1$. Since $(m, n)_\infty = 1$ if and only if at least one of m, n is positive, we see that $|S|$ is odd if and only if either at least one of m, n is positive with $(m, n)_2(-1, t)_2 = -1$ or m, n are both negative with $(m, n)_2(-1, t)_2 = 1$. \blacksquare

We now consider some special situations where we can use Corollary 3.8 to verify the \mathbb{Q} -adequacy of the extension $\mathbb{Q}(\sqrt{m}, \sqrt{n})$ solely in terms of simple congruence conditions.

COROLLARY 3.9: *Let m, n be relatively prime odd integers. Then $\mathbb{Q}(\sqrt{m}, \sqrt{n})$ is \mathbb{Q} -adequate if either*

- (1) *at least one of m, n is positive, $m \equiv n \equiv 3(4)$ and $mn \equiv 5(8)$, or*
- (2) *both m and n are negative and interchanging m, n if necessary, $m \equiv 5(8)$ and $n \equiv 3(4)$.*

Proof: Apply Corollary 3.8 with $t = 1$ and recall

$$(m, n)_2 = (-1)^{((m-1)/2) \cdot ((n-1)/2)}. \quad \blacksquare$$

COROLLARY 3.10: Let $L = \mathbb{Q}(\sqrt{m}, \sqrt{n})$ where $m = rt, n = 2s't$, with r, s', t pairwise relatively prime and odd, and t positive. If at least one of m, n is positive, then L is \mathbb{Q} -adequate if any of the following conditions hold:

- (1) $m \equiv -1(8), s' \equiv 3(4)$,
- (2) $m \equiv -3(8), r \equiv 1(4)$, or
- (3) $m \equiv 3(8), s' \equiv 1(4)$.

If both m and n are negative, then L is \mathbb{Q} -adequate if any of the following conditions hold:

- (1) $m \equiv -1(8), s' \equiv 1(4)$,
- (2) $m \equiv -3(8), r \equiv 3(4)$, or
- (3) $m \equiv 3(8), s' \equiv 3(4)$.

Proof: Since $n \equiv 2(4)$, the conditions $m \equiv -1, -3$ or $3(8)$ guarantee

$$[\mathbb{Q}_2(\sqrt{m}, \sqrt{n}) : \mathbb{Q}_2] = 4$$

in all cases. We apply Corollary 3.8 by first observing that

$$\begin{aligned} (m, n)_2(-1, t)_2 &= (m, 2)_2(m, s')_2(m, t)_2(-1, t)_2 = (m, 2)_2(m, s')_2(-rt, t)_2 \\ &= (m, 2)_2(m, s')_2(r, t)_2 = (-1)^\epsilon, \end{aligned}$$

where $\epsilon = (\frac{m^2-1}{8}) + (\frac{m-1}{2})(\frac{s'-1}{2}) + (\frac{r-1}{2})(\frac{t-1}{2})$. If $m \equiv -1(8)$, then $r \equiv -t(8)$, and $\epsilon \equiv \frac{s'-1}{2} (2)$. If $m \equiv -3(8)$, then $r \equiv t(4)$, and $\epsilon \equiv 1 + (\frac{r-1}{2})(\frac{t-1}{2}) (2)$, so $\epsilon \equiv 0 (2)$ if $r \equiv 3(4)$ and $\epsilon \equiv 1(2)$ if $r \equiv 1(4)$. If $m \equiv 3(8)$, then $r \not\equiv t(4)$, and $\epsilon \equiv 1 + \frac{s'-1}{2} (2)$. The results then follow. \blacksquare

The analysis of the \mathbb{Q} -adequacy of the biquadratic extensions $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ and $\mathbb{Q}(\sqrt{-p}, \sqrt{q})$ for p, q distinct primes was carried out in [S], §3. When both p and q are odd primes, however, the author neglected to consider the degree over \mathbb{Q}_2 , leading to some inaccurate conclusions in these cases. The next corollary corrects these results of Schacher ([S], Theorem 3.2, Corollary 3.3 and Theorem 3.4 (3)).

COROLLARY 3.11: Let p, q be distinct odd primes.

- (1) $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ is \mathbb{Q} -adequate if and only if either $(\frac{p}{q}) = (\frac{q}{p}) = -1$ or $p \equiv q \equiv 3(4)$, $pq \equiv 5(8)$.
- (2) $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ is \mathbb{Q} -deficient if and only if either $(\frac{p}{q}) = (\frac{q}{p}) = 1$ or $p \equiv q \equiv 3(4)$, $pq \equiv 1(8)$.

(3) $\mathbb{Q}(\sqrt{-p}, \sqrt{q})$ is \mathbb{Q} -adequate if and only if either $(\frac{-p}{q}) = (\frac{q}{p}) = -1$ or $p \equiv 1 \pmod{4}$, $q \equiv 3 \pmod{4}$, $pq \equiv 3 \pmod{8}$.

Proof: We prove statement (3) only; statement (1) is proved similarly and (2) follows easily from (1). We have $|S| \geq 2$ if and only if $|S| = 2$, which occurs if and only if $(\frac{-p}{q}) = (\frac{q}{p}) = -1$. We have $|S| = 1$ if and only if $|S|$ is odd, which occurs if and only if $(-p, q)_2 = -1$ by Lemma 3.7. Since $(-p, q)_2 = (-1)^{\frac{-p-1}{2} \cdot \frac{q-1}{2}}$, it follows that $(-p, q)_2 = -1$ if and only if $p \equiv 1 \pmod{4}$, $q \equiv 3 \pmod{4}$. Observe $[\mathbb{Q}_2(\sqrt{-p}, \sqrt{q}) : \mathbb{Q}_2] = 4$ if and only if $-p, q, -pq \not\equiv 1 \pmod{8}$. The result now follows from Proposition 3.3. ■

The following two corollaries consider several other special cases where Theorem 3.6 can be applied to determine precisely when the given extension is \mathbb{Q} -adequate.

COROLLARY 3.12:

- (1) Let m be an odd integer, possibly negative. Then $\mathbb{Q}(\sqrt{m}, \sqrt{2})$ is \mathbb{Q} -adequate if and only if m has at least one prime factor $r_i \equiv \pm 3 \pmod{8}$. This always occurs if $m \equiv \pm 3 \pmod{8}$.
- (2) Let m be a positive odd integer. Then $\mathbb{Q}(\sqrt{m}, \sqrt{-2})$ is \mathbb{Q} -adequate if and only if m has at least one prime factor r_i such that either $r_i \equiv -1 \pmod{8}$ or $r_i \equiv -3 \pmod{8}$. This always occurs if either $m \equiv -1 \pmod{8}$ or $m \equiv -3 \pmod{8}$.
- (3) Let m be a negative odd integer. Then $\mathbb{Q}(\sqrt{m}, \sqrt{-2})$ is \mathbb{Q} -adequate if and only if either $m \not\equiv 1 \pmod{8}$ and m has at least one prime factor r_i with $r_i \equiv -1$ or $-3 \pmod{8}$, or $m \equiv 1 \pmod{8}$ and m has at least two prime factors congruent to -1 or $-3 \pmod{8}$. This always occurs if $m \equiv 3 \pmod{8}$.

Proof: Apply Theorem 3.6 to the situation where $n = \pm 2$, $t = 1$. ■

COROLLARY 3.13:

- (1) Let n be a positive odd integer. The extension $\mathbb{Q}(\sqrt{-1}, \sqrt{n})$ is \mathbb{Q} -adequate if and only if either $n \equiv 3 \pmod{8}$ or at least two prime factors of n are congruent to $3 \pmod{4}$.
- (2) Let n be a positive even integer. Then $\mathbb{Q}(\sqrt{-1}, \sqrt{n})$ is \mathbb{Q} -adequate if and only if n has at least one prime factor $s_j \equiv 3 \pmod{4}$. This always occurs if $n \equiv 6 \pmod{8}$.

Proof: Apply Theorem 3.6 to the situation where $m = -1$, $t = 1$. ■

References

- [G] F. Q. Gouvêa, *p-Adic Numbers, An Introduction*, Springer-Verlag, Berlin, 1993.
- [H] M. Hall, Jr., *The Theory of Groups*, 2nd edition, Chelsea, New York, 1976.
- [IR] K. Ireland and M. Rosen, *A Classical Introduction to Modern Number Theory*, 2nd edition, Graduate Texts in Mathematics Vol. 84, Springer-Verlag, New York, 1990.
- [LSS] D. B. Leep, T. L. Smith and R. Solomon, *Frattini closed groups and adequate extensions of global fields*, Israel Journal of Mathematics, this volume.
- [S] M. Schacher, *Subfields of division rings, I*, Journal of Algebra **9** (1968), 451–477.
- [Se] J.-P. Serre, *A Course in Arithmetic*, Graduate Texts in Mathematics Vol. 7, Springer-Verlag, New York, 1973.